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ABSTRACT /

Hydrostatic Journal Bearings (HJBs) are reliable and resilient fluid film rotor support elements
ideal to replace roller bearings in cryogenic turbomachinery. HJBs will be used for primary space-power
applications due to their long lifetime, low friction and wear, lTarge load capacity, large direct stiffness,
and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice
compensated, spherical hydrostatic journal bearings (HIBs) is presented. Spherical bearings allow
tolerance for shaft misalignment without force performance degradation and have also the ability to
support axial loads. The spherical HIB combines these advantages to provide a bearing design which
could be used efficiently on high performance turbomachinery.

The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass
and momentum equations. These equations are solved numerically using an efficient CFD method.
Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HIB in a LO,
environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of
the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and
centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.

NOMENCILATURE

A, Cd 7 d,*/4. Equivalent orifice area |m?].

A, _ T R.6. Recess area |m?].

C.(8),C.,C, Radial clearance function, characteristic clearance [m], C,/C.

C.p Force damping coefficients due to displacements [Ns/m], («.8 = X,Y,Z)
D. 2 R.. Bearing diameter at midplane (S=0) [m]

d, C, Orifice diameter [m], Orifice discharge coefficient

f,s ay [1 + (cy r,p/H + by/R,5)*M ; a, = 0.001375, b,, = 500,000

ey = 1/3.00, ¢y = 10,000,
r = surface roughness
Turbulent flow friction factors at journal and bearing surfaces.
Fy.F\.F;  Film forces along {X,Y,Z} axes [N] '

fx.fy,t7 cosy, Cosy, -siny

h, Hy/c. = C(s) + extyhy + €y fyhy + €,fh, Dimensionless zeroth-order film thickness
h, Ae, f, b, . First-order film thickness function,

hy,hy,h, cosd, sinf, +1. Circumferential film thickness components.

H, Recess depth [m]) ' ,

K.z Force stiffness coefficients due to displacements [N/m], (o,8 = X,Y,Z)

L,L;.L, Bearing axial length = L+ L, [m], Right and left axial side lengths measured from

recess center

| Recess path length [m]
M U, .‘/6 *p, . Circumferential velocity Mach number
M.s Force inertia coefficients due to displacements [Ns*/m], (o8 = X,Y,Z)
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Number of recesses on bearing

Fluid pressure, supply and recess pressures [N/m?]
Pressures just before and after recess edge [N/m?]

Discharge pressures on left and right sides of bearing [N/m?]
Min{P,,P,}. Characteristic discharge pressure [N/m?
(P-P.)/(P,-P.). Dimensionless fluid film pressure
Dimensionless dynamic (first-order) pressures

Orifice mass flow rate [kg/s].

Bearing radius, Characteristic bearing radius [m], R(s)/R.

(p @ C R/p).. Nominal circumferential flow Reynolds number
(0 U C /u).. (C/R).. Modified pressure flow Reynolds number
(p @ C? /u).. Nominal Squeeze film Reynolds number

(0 U, C /u).. Path flow Reynolds number

(p/WH ||lU,-Q-R? + U: (o) H |JIUs+U7]

Flow Reynolds numbers relative to journal and bearing surfaces

Path coordinate on plane of bearing surface [m], S/R.

Bearing path lengths on right and left sides of bearing [m]

Fluid mean operating temperature [°K)

C%(P,-P.)/(n.R.). Characteiistic pressure flow speed [m/s]

(U,,Up/U.. Dimensionless mean flow velocities in path (s) and circumferential (§)
directions

(H,+H)A +V,. Total recess volume, Volume of orifice supply line [m?]
Inertial coordinate system

Z(s)/R.. Dimensionless axial coordinate

(1/p)(3p/3P). Liquid compressibility coefficient [m*/N]

(ex.ev,€,)/C.. Dimensionless journal eccentricities in X, Y, Z directions
Dimensionless dynamic (perturbed) eccentricities

Local slope of path coordinate (S) relative to Z axis

H/(H,+H). Ratio of land film thickness to recess depth

Circumferential or angular coordinate

Recess angular Iength [rad]

1/2(x,+x5). Turbulence shear factors in (s,6) flow directions

f, Ry, fy Ry. Turbulent shear parameters at journal and bearing surfaces
(Re h,)*®!/7.753. Turbulent shear flow parameter at recess

Fluid density [kg/m’], characteristic density [kg/m]

Fluid viscosity [Ns/m’], characteristic viscosity [Ns/m?] 7
Empirical recess-edge entrance loss coefficients in circumferential
(upstream,downstream) direction

Empirical recess-edge entrance loss coefficients in path direction (left and right of recess)
Rotational speed of journal, excitation or whirl frequency [1/s]

wt. Dimensionless time coordinate _

Recess boundary with outward normal n.
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INTRODUCTION

Hydrostatic Journal Bearings (HJBs) are the ideal candidates to replace roller bearings as support
elements in cryogenic turbomachinery. These bearings will be used for primary space-power applications
due to their mechanical simplicity, long lifetime, low friction and wear, significant load capacity, and
large direct stiffness as well as damping force coefficients. HIBs, unlike rolling element bearings, have
no limit on a DN constraint, and shaft speeds can be allowed to increase to a level more suitable for high
operating efficiency with reduced overall turbomachinery weight and size. Durability in HIBs is assured
by the absence of contact betwe=n static and moving parts during steady-state operation, while long life
reduces the frequency of required overhauls. Despite these attractive features, tluid film bearing stability
considerations due to hydrodynamic and liquid compressibility effects are a primary concern for operation
at high rotational speeds along with large pressure differentials. The present technological needs call for
reliable and resilient fluid film bearing designs which provide maximum operating life with optimum -
controllable rotordynamic characteristics at the lowest cost (Scharrer, 1991, 1992a).

The analysis of the flow and force response in turbulent flow hydrostatic bearings is of complex nature
and confined within the realm of classical lubrication theory until recently, see for example Redecliff and
Vohr (1969), Artiles et al. (1982), Chaomleffel et al. (1986). HIBs for process liquid applications present
unique flow conditions, requiring for low viscosity liquids large levels of external pressurization to
provide adequate load capacity and radial stiffness support. Typical pressure drops across a HJB can
be as large as 30MPa and determine a fully inertial - turbulent fluid flow with significant variation of the
liquid material properties across the flow region.

San Andres (1990,1992a) introduced turbulent - inertial bulk-flow models for the analysis ot compressible
liquid (barotropic) HIBs. Extensive numerical predictions have revealed the importance of fluid inertia
at the film lands and at the recess boundaries of typical high speed HIBs. San Andres (1991a) shows that
moderate to large journal eccentricities have a pronounced eftect on the force coefticients of HIBs with
large hydrodynamic effects (high rotational speeds). Furthermore, orifice back-flow along with a sudden
drop on direct stiffness are likely to occur at large eccentricity operation.

Kurtin et al. (1991), Franchek (1992), and Mosher (1993) present relevant experimental data for the static
and dynamic force characteristics of water lubricated, turbulent flow, hydrostatic bearings. Experimental
measurements are routinely performed for hydrostatic bearings of different geometries and at journal
speeds ranging from 10,200 to 24,600 rpm and pressure supplies from 4 to 7 MPa. These references
also present extensive comparisons of test results with numerical predictions based on the models of San
Andres (1990, 1992a). In general the correlation between experimental and theoretical results is very
good for conventional HIB geometries. It is noted that accurate theoretical results depended greatly on
the knowledge of the bearing operating clearance, and most importantly, on the orifice discharge
coefficients. '

Adams et al. (1992) have also presented test results for the rotordynamic force coefficients of a four pad,
one recess/pad, laminar flow, hydrostatic bearing. The experiments were performed with SAE 30 oil
and at low rotational speeds (1000 and 2000 rpm) and low pressure supplies (max. 2.6 MPa, 375psig).
Force stiffnesses and direct damping coefficients seem to be well identified while cross-coupled damping
and inertia force coefficients show a rather unexpected behavior.

The threshold speed of instability and the whirl frequency ratio (WFR) define the stability
characteristics of a simple rotor-bearing system. This instability is of the hydrodynamic type and solely
due to the effect of journal rotational speed on the flow field. Incompressible liquid hydrostatic bearings
present a whirl frequency ratio identical to that of plain journal bearings (WFR ~0.5). This condition,
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as also verified experimentally by Mosher (1993), then limits severely the application of HJBs to high
speed, light weight turbomachinery. HIBs handling highly compressible liquids, such as LH, for example,
are prone to show a self-excited type instability of the pneumatic hammer type and can produce negative
damping force coefficients for low frequency excitations. Dynamic operation under these conditions will
then result in a poor stability indicator (WFR) greater than 0.50. This important result, although first
reported by Redecliff and Vohr (1969), has been largely overlooked until recently.

Recommended fixes to improve the limited dynamic stability of turbulent flow hydrostatic
bearings are:

® Use of large scale roughened bearing surfaces to reduce the cross-coupled stiffness coefficients
directly promoting hydrodynamic bearing instability (Franchek,1992).

® Use of end seal restrictions or wear end-rings (Scharrer et al., 1992b) to control bearing leakage,
increase the damping coefficients, and add a degree of safety for start-up and shut-down transient
operation.

® Use of liquid injection opposing journal rotation to reduce the development of the circumferential
flow velocity and eliminate the cross-coupled stiffness coefficient (Franchek, 1992).

The development of a leading technology in HIBs calls also for a bearing geometry not only able
to provide radial load support but also with the capability to handle axial loads accompanied by shaft
dynamic axial excurtions (Sutton et al., 1991). Spherical bearings offer this advantage along with the
capability to tolerate large levels of static and dynamic misalignment (from journal and bearing) without
alteration of the bearing performance. Furthermore, the recent developments in CNC manufacturing
processes allow to machine spherical surfaces almost as quickly and economically as cylindrical surfaces
(Craighead, 1992).

Goenka et al. (1980) and Craighead et al. (1992) have provided analysis of spherical journal bearings
for laminar/turbulent flow applications. However, in high-speed. turbulent flow applications with process
liquids of low viscosity, fluid inertia effects need to be accounted. Most notably, centrifugal flow
acceleration terms are of particular importance for these operating conditions. The present study
considers the analysis of hemispherical hydrostatic bearings with a barotropic liquid. Turbulent bulk-flow
equations of motion are derived and solved numerically using an efficient CFD algorithm. Numerical
predictions for the load capacity (radial and axial) and dynamic force coefficients for a LO, HJB are
presented and discussed in detail.

ANALYSIS

Consider, as shown in Figure 1, the flow of a variable properties liquid in the thin film region
between an inner rotating journal and a stationary bearing. Cryogenic liquids are characterized by low
viscosities, and thermal (energy transport) effects due to friction heating and kinetic energy variations are
expected to be of minor importance in the performance of hydrostatic bearings. This assertion is not fully
justified for especial operating conditions (see for example Yang et al., 1992a). On the other hand, due
to the large levels of pressure differential required to provide substantial load capacity, the effects of
pressure on the liquid properties, and ultimately on bearing performance, are thought to be of primary
importance.

Figure 2 shows the journal outer surface as a surface of revolution formed by rotating the curve
R(Z) about the axis Z. The path (S) and circumferential (8) coordinates are used as independent spatial
variables. The coordinates {Z.R} defining the journal surface are expressed as parametric functions of
the path coordinate S. Trigonometric function of the angle y defining the local slope of the path relative
to the axis (Z) are given by:
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dR . dR dz
tany = -—:! siny =-__: c¢osy =22 n
L LTS L
where the coordinate relationships for journal/bearing spherical surfaces are:
)

Y=g RO =Roeosy,  ZS) = R siny )

and R.(=D./2) corresponds to the journal radius at the bearing axial midplane.

At operating conditions, the journal position relative to the bearing housing is described with
reference to the inertial axes {X,Y,Z} by the Journal center displacements (ex(t), ey(t), e,(t)). Simple
geometrical relationships determine the film thickness in the flow region to be given by the following
expression (Goenka et al., 1980, Childs,1989): :

H(S,6,) = C(S) + e, cosycosf + e, cosysinf - e,siny ' 3
In a spherical bearing, journal axis rotations or misalignment provide no film thickness variation on

the flow region. C(S) in (3) above is a general function describing the radial clearance variation along
the path coordinate for the journal centered position.

The equations of motion

The turbulent bulk-flow equations for a variable properties (barotropic) liquid on the thin film lands
of the spherical bearing are given as (Childs, 1989):

Equation of continuity:

d i) d
= —— (pHU — WHU) = 0 . 4
o (oH) + NS (0bHUR) + Raa(p o)
Path momentum equation
5)
P 8pHU) | { dHUUR)  d(poHU,U,) . dR (
-H__ =2 (U _ - pHU; Z——
55~ g &U "R s T a8 ° s
Circumferential momentum gquation;
d(oH dpHU U dpHU U (6)
-n 0P _ B[y g OR), O@HU) 13 0HUUR)  3(HU,U,) + pHU U, 2R
R3¢ H 2 ot R A a6 AN

on the region {-§, <S<8;; 0<6<2x}; and where, k. =k,=(k,+kg) are the wall shear stress difference
coefficients taken as local functions of the turbulent friction factors, Reynolds numbers and surface
conditions, i.e, k,=fR,, ky=f,R, (Hirs, 1973, San Andres, 1992a). For inertialess-laminar fluid flows
the equations above reduce to the classical form given by Goenka and Booker (1980) for spherical bearing
geometries.

For cryogenic liquids such as LH2, LO2, LN2, and LCH4, the fluid properties are calculated from

the Benedict-Web-Rubin equation of state as given in the standard computer program and data base of
McCarty(1986).
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global balance between the mass flow through the orifice restrictor (Q,,), the mass flow into the film lands
and the time rate of change of liquid mass within the recess volume V,. This equation is given as:

— - av P
Q, = A,{20,(P;-P) = J (AT BT, + p— + pVS— -

Jor r = 1,2,..., Nrecess

where 8=(1/p)dp/dP represents the fluid compressibility material coefficient at the recess volume, and
T, is the closure of the recess volume with the film lands and with normal n along the boundary line.
Note that the orifice flow equation is valid only for small changes of the liquid density (Hall et al.,
1986).

The fluid edge pressure at the entrance to the film lands is given by the superposition of viscous
shear effects on the recess extent and an entrance drop due to tluid inertia. On the circumferential
direction, the pressure rise (P,) downstream of the recess orifice is given by (Constantinescu et al., 1987,
San Andres, 1992a):

_ OR(s) 1

8
2 | 0 -m ®

R.©
P, =P, - pk,— | Ue fo,)n
2H;

r

where M is the circumferential tlow local Mach number at the orifice discharge.

The entrance pressures (P,) to the film lands in the circumferential and axial directions are given
by:

P =P - %:(1 +z,){1 - (p;/p;)znZ} v, ©)

+ p: gy - 2
P, =P - |l 1 - (o, /.Y 0} U;
. =P, 2( +E,){ (o p)n} | (10

forr = 1,2..., Nrecess

The Bernoulli like pressure drop in equations (10) is considered only if the fluid leaves the recess
towards the film lands. If on the contrary, fluid enters from the film lands into the bearing recess, then
the edge pressure takes the value of the recess pressure (P,). This consideration is based on momentum
conservation for turbulent shear flows in sudden expansions and also on the fundamental measurements
of Chaomleftel et al.(1986). The inertial pressure drop given above does not account for centrifugal flow
effects in the spherical bearing geometry since the change in the bearing radial coordinate from recess
edge to film lands is small.
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Boundar nditions:

Due to periodicity, the pressure and velocities are continuous and single-valued in the circumferential
direction ©; i.e.,

P,U,,U,(8,0,0) = P,U,U,S,0 + 2,1 (11)

At the bearing side discharge planes, the fluid pressure is equal to specified values of discharge or
sump pressures, i.e.:
at the right plane, Z = +L,  P(+5,,0) = P,(6)
at the left plene, Z = -1,  P(-S,,60 = P.(0) (12)

In general the discharge pressures are uniform and constant. However, in some cryogenic turbopump
applications the bearing may be located close to the pump-impeller discharge. In this case, the sump
pressures are non-uniform though rotationally symmetric and expressed by a Fourier series. The boundary
conditions described are valid for fluid flows well below sonic conditions.

Perturbation Analysis

Consider the journal center to describe small amplitude harmonic motions about an equilibrium static
position. That is, let the journal center displacements be given as

et) = ey, + Aeye™, efn) = e, + Ae,e™, ef) = e, + Ae,e™; i=/-1 (13)

where w denotes the frrquency of the w}1irl motion. The magnitudes of the dynamic perturbations in
Jjournal displacements, I{Aey,Aey,Ae,}/C.l are very small (i.e. < < < 1). Then, the film thickness is
given by the superposition of steady-state (h,) and dynamic (h,) components given by the real part of the
expression:

h = hO + hl e™ (148)
where h, = C(s) + {g,, cosb + e, sinf}cosy - ¢, siny (14b)
h, = Qe f, h, = D¢y fu hy + Ae, f, h, + Ae, f, b, (14c)

with — f(s) = ffs) = cosy; f, = -siny, and h, = cosb; h, =sing, b, =1 (15

are the film thickness perturbed functions along the path and circumferential coordinates, respectively.
These functions greatly facilitate the comprehension of the perturbed flow field equations and the resulting
rotordynamic force coefficients given latter.

The flow field variables (U,,U,,P), as well as the fluid properties (o,x) and the shear parameters
(ko,k,) are also formulated as the superposition of zeroth-order and first-order complex fields describing
the static equilibrium condition and the perturbed dynamic motion, respectively. In general, these fields
are expressed as:
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Y=V +e"{Ae¥, + Ae ¥, +AcY,) =¥, +e"Ac ¥, a=XYZ (16)

San Andres (1990,1992a) and Yang (1992b) discuss the procedure for the numerical solution of the
non-linear flow equations. The differential equations of motion are integrated on staggered control
volumes for each primitive variable. Program computing time is relatively small since the code uses
accurate approximate analytical solutions to initiate the computational procedure and accelerate
convergence to a solution defined by the operating parameters and bearing geometry.

Fluid Film Forces and Dynamic Force Coefficients

Fluid film forces are calculated by integration of the zeroth-order pressure field on the journal surface,

F,, Jy* cost
F.,l = (P,-'P,)R3 J.I‘ LO'Q' P, Sye sin6 | reds '-dG (n
F, ' £l

AF, K, K, Ky Ae, Cu Co Cpol |4, M, M, M, e,
AF, | = - |K,, K, K, de |- |Cy C,, C | (A¢,|- (M, M, M, A,
AF, K, K, K, Ae, Cx C, C,| {Aae, M, M, M, Ae,
(18)
where the force coefficients due to journal center displacements are given by:
Ko =o' Mgvio:Cy=- ‘_‘(P'-cp°)R: [ (7 pufeburasag 09

o,f = X,Y,Z

RESULTS AND DISCUSSION

Experimental results for the steady state and dynamic force response characteristics of turbulent flow
HIBs for process liquid applications are given by Kurtin et.al (1991), Adams et.al (1992), Franchek
(1992), and Mosher (1993). These studies are relevant to the investigation of cylindrical bearing
geometries with large pressure drops and high rotational speeds similar to those found in high
performance turbomachinery components. Correlation of test measurements with predictions based on
the present flow model are very favorable for smooth surface HIBs (Franchek,1992, Yang.1992b,
Mosher,1993).
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Spherical hydrostatic bearings may provide a unique alternative for radial load support in cryogenic
liquid turbopumps (Sutton et.al, 1991) since they also offer the distinct advantages of tolerance to journal
misalignment and ability to withstand shaft axial motions by providing axial thrust. In the following, the
static and dynamic performance characteristics of a spherical HIB geometry handling LO, are presented
and discussed. Normalization of results and extensive parametric studies accounting for variations in the
bearing geometrical and operating parameters would be impractical due to the complex nature of the flow
field and force response in turbulent hydrostatic bearings. It suffices to say that the example presented
corresponds to a bearing element designed for optimal radial support at the rated operating conditions.

Table 1 shows the geometry and operating conditions of a 6 recess, LO, hydrostatic bearing with
a fixed pressure drop across the bearing (2,000 psi) and a rotational speed equal to 22.5 Kcpm. The
spherical bearing diameter (D.) and axial length (L) are equal to 91.036 mm and 64.37 mm, respectively.
The exit diameter of this bearing is equal to 64.37 mm and the arc described by the spherical path
between the bearing middle and discharge planes is equal to y"'=45°. At the rated conditions, a recess
pressure ration (P,) equal to 0.55 provides maximum direct stiffness coefficients and requires orifices of
diameter equal to 2.37 mm. Table 1 also includes values for the empirical recess-edge non - isentropic
loss parameters (£) and orifice discharge coefficients (C,) used in the analysis. The values chosen are
representative from those used in the extensive experimental - theoretical studies of Kurtin et al. (1991)
and Franchek (1992). The regime of operations of the bearings is fully turbulent with circumferencial
(R..) and axial flow (R_,) Reynolds numbers equal to 56,900 and 35,857, respectively. A comprehensive
study and comparison between the performance characteristics of equivalent cylindrical and spherical
HJBs can be found in the work of San Andres (1992b).

Numerical predictions are presented for the static and dynamic force characteristics of the bearing
for increasing values of the axial journal eccentricity (e,) while the journal center is displaced radially
towards the middle of the bottom recess, i.e. ey varies and e,=0. From equation (3), the maximum
axial journal displacement is equal to &, = (1- & cos v" )/sin v*, where y* corresponds to the spherical
angle at the bearing discharge, that is 45° for the example presented.

Figure 3 shows the radial load of the bearing as the static eccentricity ( e) increases and for values
of axial journal displacement (e,) equal to 0.0 and 0.60, respectively. The results show the load to
increase linearly with the journal lateral displacement denoting a bearing with uniform stiffness
characteristics for most eccentricities. The eftect of the axial journal motion is relatively small on the
total bearing load. Figure 4 shows the restoring force (-F;) as the axial journal is displaced towards the
bearing shell and for increasing values of the static lateral eccentricity (ex). The axial force appeats to
be linear with displacement and increases with the radial journal displacement. Note that the thrust load
(F,) is about 1/5 of the radial load, and shows the spherical bearing to have a limited axial load capacity
in comparison with its radial load support. '

Figures 5 and 6 show the direct (Kyx.Kyy) and cross-coupled (Kyy, Kyx) radial force stiffness
coefticients, and Figure 7 presents the direct damping coefficients (Cyx,Cyy) for increasing values of the
Journal eccentricity ex. The figures show the axial journal center displacements (e;) not to affect these
coefficients except at large lateral eccentricities (¢4). Note that the radial force coefticients are relatively
constant for radial eccentricities as large as 50% of the bearing clearance and show clearly the major
benefit of a hydrostatic bearing. A lucid discussion on the effect of these radial coefficients on the
rotordynamic lateral force response can be found elsewhere (San Andres, 1991a).

Figures 8 and 9 show the direct axial stiffness (K,;) and direct damping (C,,) coefficients for

dynamic journal axial motions as the lateral eccentricity (ey) increases. These coefficients increase with
the journal axial position and show a significant rise at moderately large radial eccentricities. At the
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concentric position (¢x = & = 0), the axial stiffness is about 1/5 of the radial stiffness (Kyx), and the
axial damping C,, is approximately 11% of the direct lateral damping (Cyx). Thus, the axial force
coefficients are relatively small when compared to the radial force coefficients. On the other hand, the
magnitudes of the axial force coefficients are still significant in terms of their ability to sustain limited
dynamic axial load conditions. For example, from Figure 4 it is inferred that the spherical HIB can
tolerate safely an axial load as large as 5,000 N (1,125 lbs).

Cross-coupled axial force coefficients (K,x,Kzy,Cqx,Czy) due to journal lateral motions, and radial
force coefficients (Kyz,Kyz,Cx2,Cvz) due to journal axial motions are not reproduced here for brevity.
The radial force coefficients are very small except for large journal center displacements and provide a
measure in uncoupling between axial dynamic motions and lateral dynamic force response. The axial
force stiffness (K,x,Kzy) are approximately 1/2 of the direct stiffness (K;) at £,=0.80, &x=0, and
decrease rapidly as the lateral eccentricity (gx) increases.

For completeness in the analysis, calculations were performed to determine whether fluid inertia
effects, both advective and centrifugal, are of importance on the static and dynamic force performance
characteristics of the spherical hydrostatic bearing. Table 2 presents a summary of the results for
increasing values of the journal rotational speed at the bearing concentric position (ex = ¢, = & =0).
The orifice diameter and loss coefficients are identical for the simulations. A comparison of results
shows large differences on the recess pressure ratio (P,) and the force coefficients. Fluid inertia acts as
an additional flow resistance and then determines larger recess pressures with a reduced flow rate. The
most notable effect is related to the reduced magnitude of the direct radial stiffnesses (Kyx = Kyy). At
the rated operating point, 22.5 Kcpm, the values of direct stiffness are equal to 240.9 and 308.5 MN/m
for the bearing with and without fluid inertia effects. This corresponds to a net reduction in hydrostatic
load capacity of 22% and it is a direct consequence of the increased flow resistance due to centrifugal
effects on the curved flow path and also due to the larger recess pressures. It is evident from the results
presented that fluid inertia effects need to be included in the analysis of high speed, turbulent flow HJBs.

CONCLUSIONS

An analysis for the performance characteristics of turbulent tflow, orifice compensated, spherical
hydrostatic journal bearing (HIBs) is presented. Hydrostatic bearings offer a substantial radial load
capacity and can be used with process liquids of low viscosity if large pressure differentials across the
bearing are available. On the other hand, the spherical bearing geometry allows tolerance for shaft
misalignment without force performance degradation and it also has the ability to support thrust loads.
The spherical HIB combines these advantages to provide a bearing design which could be used efficiently
on high performance turbomachinery.

The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and
momentum equations. Zeroth-order equations describe the fluid flow field for a journal equilibrium
position, while first-order linear equations govern the fluid flow for small amplitude journal center radial
and axial motions. Solution to the zeroth-order flow field equations provides the bearing flow rate,
radial/axial film forces and drag torque. Solutions to the first-order equations determine the rotordynamic
force coefficients due to journal lateral and axial motions. Numerical predictions of load capacity and
force coefficients for a 6 recess, spherical HIB in a LO, environment are presented for increasing values
of the journal center radial and axial displacements. The results show that axial journal motions do not
alter significantly the radial load capacity of the bearing. On the other hand, the spherical bearing
geometry provides fluid film axial forces of a magnitude about 20% of the radial load capacity for the
example analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static
and dynamic force performance of the bearing studied.
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‘Table 1. Geometry and Operating Conditions of 6 recess, LO2

Spherical Hydrostatic Journal Beanng.
Dimensions : Numoer o1 recesses Nrec = 5.

cearance. €=101.6umi0.004 in). recess geptn, Hr=381umi0.015in); Hne=3.75

Spbencal: Diameter. D*=91.036mm (3.58in): Path Lengin. S=71.50mm (2.815 ;

DRra 64.372mm (2.5534in):
Axial lengin. L= 64.372mm (2.5534in): LD* = G.707. R*/c=448.0
Spherical angle v/ 2= 45 deg.

Recess: length 1=31.74mm(1.25 in}, circumterenual lengin Or=30.0 ceq.
lournal and bearing suriace conditions: smooth

Oritice Ca=0.89. z.ameter do=2.377mm if concentnc recess cresure rano pr=0.55,

Recess eage (non-isentropici coerticients &220.0: 242.0.50; 2,=00

Operating Parameters: rotational speed: 2,356 raa/s (22.5 Kepm)
Pressure supply, Ps=15.16 MPa 12.200 psia)
exn, Pa= 1.38 MPa ( 200 psia;
Fluid: LO2 at 90K (152 R). UUs=0.27454F-3 Pa-s, Ps=1.172 Kg/m3
Ua=0.19813E-3 Pa-s, pa=1.144 Kg/m3
B =0.1696-8 1/Pa=1.(85.52 kosi).
TYP Reynolds numbers:

Reorc=ps2R C/us=35.500 ;
Reaxa=mv(2aDR uai= 35.857. Mass tiow rate cancentnc=2.8735 kgss

recess orifice

. RO S
DJ I 2 :.WM,W%%

1

. Soherical —+«0 9,/‘
77i HJB :

R e . o]

L2

Table 2 o
Spherical hydrostatic bearing performance characteristics
Effect of Pluid Inertia

(a) Model with fluid inertia effects, d0=2.37mm

Speed Pr-Pa Mass flov Torque KXX=KYY KX'T:'KYX Kzz CXX=CTY CXT:-CYX sz
v

(Repm) Fs-Pa (kg/s) (N-m) (N/m) QMN-s/m)

0.00 0.4700 3.1314 0.000 179.32 0.00 6.82 151.9%0 0.00 19.30

12.50 0.4980 3.0160 2.833 229.20 112.30 6.74 153.60 16.86 19.50

22.50 0.5000 2.8735 5.980 240.90 198.90 6.43 165.30 25.50 19.70

(b) Model without fluid inertia effects. d =2.37mm

[e]

Speed Pr-Pa Mass flowv Torque l(xx=llrY KXY=~ILYx KZZ CXX'CYY CXY"CTX sz
Ps-Pa . MN-s/m) .

{Repm) kg/s) (N-m) (MN/m) (MN-s

0.00 0.4157 3.2763 0.000 257.99 0.00 S5.07 92.38 0. 10.40

12.30  0.4302 3.2290 2.996 280.40 39.40 4.88 101.30 2.10 10.30

22.50 0.4632 3.1259  A.086 308.50 74,09  4.71 110.50 2. 10.30
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Figure 1. Geometry of a Spherical Hydrostatic Bearing.
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Figure 2. Coordinate Relationships in a Spherical Bearing
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